Fractions that name the same value are called equivalent fractions, such as $\frac{2}{3}=\frac{6}{9}$.
One method for finding equivalent fractions is to use the Multiplicative Identity (Identity Property of Multiplication), that is, multiplying the given fraction by a form of the number 1 such as $\frac{2}{2}, \frac{5}{5}$, etc. In this course we call these fractions a "Giant One." Multiplying by 1 does not change the value of a number.

For additional information, see the Math Notes box in Lesson 3.1.1 of the Core Connections, Course 1 text.

Example 1

Find three equivalent fractions for $\frac{1}{2}$.
$\frac{1}{2} \cdot \sqrt{2}=\frac{2}{4}$
$\frac{1}{2} \cdot \frac{3}{3}=\frac{3}{6}$
$\frac{1}{2} \cdot\left\{\frac{4}{4}=\frac{4}{8}\right.$

Example 2

Use the Giant One to find an equivalent fraction to $\frac{7}{12}$ using 96ths: $\frac{7}{12} \cdot \mathfrak{G}=\frac{?}{96}$
Which Giant One do you use?
Since $\frac{96}{12}=8$, the Giant One is $\frac{8}{8}: \quad \frac{7}{12} \cdot\left\{\frac{8}{8}=\frac{56}{96}\right.$

Problems

Use the Giant One to find the specified equivalent fraction. Your answer should include the Giant One you use and the equivalent numerator.
1.

$$
\frac{4}{3} \cdot \int=\frac{?}{15}
$$

4.

$$
\frac{3}{7} \cdot \int=\frac{?}{28}
$$

2.

$\frac{5}{9} \cdot \int=\frac{?}{36}$
3.

$$
\frac{9}{2} \cdot f=\frac{?}{38}
$$

5.

$$
\frac{5}{3} \cdot \int=\frac{?}{18}
$$

6.

$$
\frac{6}{5} \cdot \Omega=\frac{?}{15}
$$

Answers

1. $\frac{5}{5}, 20$
2. $\frac{4}{4}, 20$
3. $\frac{19}{19}, 171$
4. $\frac{4}{4}, 12$
5. $\frac{6}{6}, 30$
6. $\frac{3}{3}, 18$
